Friday, November 29, 2019

Females are better students than males free essay sample

Both genders have their pros and cons in terms of being a student, so everyone can be as a perfect student if he/ she taking the opportunity. females are not better than males they just have a space of time to study more than males because they always sitting at home. also in the past, women did not take their parts in the society like men so they are trying to be an important part in all fields so when they become an important part all people feel of this development. females have the patience to study more than males. but Statistics confirm that males are more intelligent than females and most of them are interesting in conclusion things on the other hand females are depending on memorizing things. when we say females are better than student that`s mean that we depended on the indicator of learning and that is not an exact factor to decide who are better Today more female students can attend universites than male students,you are required to express your idea both the positive aspect and negetive aspect . We will write a custom essay sample on Females are better students than males or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page This proves that women are as clever as men. In the olden days, women are forbidden to go to school / college, due to their status in societies and the general believes that they are not intelligent enough to compete against men. Pupils tend to learn better and faster in a gender-balanced environment. This is especially true for males, if there were only a few male pupils in a class, then these male pupils would not be as bright as the others, or they would be unable to reach their full potentials. In the evolution point of view, this phenomenon is an obstruction of reproduction. Since there are more highly educated females than males in the society, and their status have reached an equilibrium, work has occupied most of womens time. The probability for females to marry between the age of 18 and 35 has declined significantly, most of whom do not even have a stable relationship. During this time period, a womans womb is mature and healthy, and it is the best time to reproduce. Educated women are more likely to miss this period to be fertilised.

Monday, November 25, 2019

Old and New Friends essays

Old and New Friends essays Last year my life changed dramatically. Towards the end of the school year I was starting to get the feeling my friends didnt want me around. At first I was denying it and kept going on as I usually do. Some of my friends in the group had been slowly starting to ignore my calls and texts and I believed them when they said they never got them. Eventually it got to a point where we would make plans in school then later that day I wouldnt hear from them. One of the very last times my friends and I had plans was also the day we almost completely stopped talking. At this point only a couple of my friends had been answering my calls and one of them told me to meet them at a friends house. The other kids there didnt want me to show up so when I got there they wouldnt answer my calls. When I walked down to the basement door it was locked and I saw them all standing there. I watched as they ran up the stairs and at the same time I walked to the front yard. As I called out to them I heard the sound of cars starting and watched all but two of my friends drive away. Chris and Cooper, the ones that stayed behind, had apologized for the others but at that point I had got the message and just went home. I felt betrayed and didnt understand why they were doing this. I felt alone and that the rest of the summer would be spent sitting at home feeling sorry for myself. I really didnt interact that much with many people outside of my group of friends so I felt scared that I could be without friends forever. A couple weeks later I called up my old friend Alex for a ride to the Crimson baseball game and he picked me up. As I stepped into the car I saw it full of people I didnt talk to and felt incredibly awkward as they just stared confused as why I was there. Slowly throughout the game, I started talking with them and I started to feel like I had been friends with them my whole life. After that I wa...

Thursday, November 21, 2019

Gender, politics, and citizenship Essay Example | Topics and Well Written Essays - 1000 words

Gender, politics, and citizenship - Essay Example This is women activist implemented liberation movement that focused on women rights. Understanding the way racism, class, ethnicity and sexual orientation interconnect with gender issues are significant in creating a social meaning and political effects; thus providing active citizenship engagement in the contemporary society. The two readings of Lowe and Davis are complementary for understanding gender, politics and citizenship because this is one way of informing development policy. 0.. The two readings from the Davis and Lowe make an attempt of revealing the way gender affects women more than many in the society. The author’s main point revolves around gender politics and the political figures of women. This is through exposing us to the women’s liberation movement as a way of fighting for civil rights and working class issues in society. Both authors try to unmask the side of fighting for women’s suffrage. This ties the issues of anti- slavery especially for Asian immigrants and the introduction of anti- slavery activist for the purpose of struggling for the women’s suffrage. They attempt to reveal the way racism, ethnicity, class and sex differences have divided members of women movement. Other main arguments involve cultural differences and linguistic forms of a nation that creates contradictions in the political sphere. It also creates impact on citizenship towards the identity of a nation. Both authors also focus on women’s history, suffrage and work coalitions. Davis and Lowes’ readings are complementary for understanding gender, politics or citizenship. This is because the three terms as being described in the two readings seem to work side by side. They are interwoven in a manner that reveals the way gender affects women’s roles and their status in the society. Davis (2) defines gender by focusing on race and class as the aspects that contribute to political differences among various citizens. She reve als the way racism and class contributes to social and cultural differences. These inequalities contributed to political issues whereby women activist in history during the women’s emancipation made an attempt of maintaining justice. The abolitionist movement aimed to address issues that women are undergoing including the education inequalities and voting rights. Therefore, under the prominent women activist such as Elizabeth Candy and Susan Anthony among others, women were able to achieve their rights. This marked the new beginning of political history whereby women were allowed to enjoy similar opportunities like men. Moreover, both authors attempt to define gender as socially constructed norms, values and ideologies that determine the behaviors or action of male and female in the society. Understanding the notion behind gender issues is significant in determining power dynamics behind an individual’s access towards resource sharing or distribution, the ability for o ne to make the decision and the way different sexes are impacted by the political process or social development. They define gender aspects on citizenship as the affirmation or exercising  the  rights  of women in order  to promote equality. For instance, women tend to be more discriminated than men in the society, in all key aspects including education, political issues and decision making process. They take fewer controls on economic and political resources; thus incorporating gender aspects and political issues into programs

Wednesday, November 20, 2019

Analysis of The Importance of Being Earnest by Oscar Wilde Essay

Analysis of The Importance of Being Earnest by Oscar Wilde - Essay Example Bracknell affirms, â€Å"35 is a very attractive marriage age (Wilde 138).† The story focuses on the theme of destiny. Gwendolyn feels she is destined to marry only the person named Ernest stating to Jack, â€Å"My very own Ernest! (Wilde 26).† Ernest represents a rich family. Jack does not belong to a rich class. Likewise, Jack is characterized as a poor person. Consequently, Jack is eager to marry a rich lady in order grab the money of the rich lady. In the same manner, the author creates an imagery picture that Algernon is an unhappy with his family (Croally 35). Algernon creates a fictitious person, Bunbury. Creation is done to escape from his family. Algernon excuses himself from many important social and family events. He instead prefers staying with Bunbury. Algernon disguises as Ernest to Cicely. Cicely falls in love with Ernest (Algernon). When Gwendolyn learns that Cicely is also being engaged to marry the same Ernest, the two women fight. However when Jack (Ernest) and Algernon (Ernest) appear together, the two women stop fighting and ven t their anger on the two men who pretended to be take the name of Ernest. Further, the story ends with Miss Prism, Lady Bracknell’s former maid, stating that Jack was left at a station thinking the child was the book to be published stating, â€Å"†¦placed the baby in the handbag and deposited it on the train to be sent to the publisher (Wilde 144)†. Jack is Algernon’s elder Brother. Since Cicely is wealthy, Bracknell approves the marriage between Cicely and Algernon. Bracknell then approves the marriage between Gwnedolyn and Jack (Ernest). The story ends with the Jack affirming to Bracknell the significance of being earnest. Jack is eager to marry Gwendolyn, â€Å"..we must marry immediately (Wilde 26).† The story shows irony (Turner 84). Gwendolyn and Cicely are both in love with the person named Ernest. Gwendolyn wants to marry only the person named Ernest. However, they find out that Jack and

Monday, November 18, 2019

Business Cloud Essay Example | Topics and Well Written Essays - 4000 words

Business Cloud - Essay Example For instance, information of an organization needs to be protected and is the ultimate responsibility of the board of director for which they are also liable. Likewise, transferring information on the cloud determines that it is not managed by the organization anymore and any consequence or a breach of data occurring on the vendor side will be a prime threat to the organization. Therefore, information security is the part of due care and due diligence that is derived from the responsible employees of the organization. Cloud Deployment Models It is the prime responsibility of the ‘Business Cloud’ to protect intellectual property and confidential information that may be related to customer personal information, trade secrets, patents etc. Breach of any one of these classified information types can result in a permanent loss of business and ultimately bankruptcy that may result in legal and regulatory compliance. Likewise, before making any strategy for transferring critica l applications to the cloud, it is important to analyze deployment and service models of cloud computing. The correct choice needs to be made in order to align business requirements to the correct deployment and service model without any unnecessary risk. ‘Business Cloud’ will select the best possible cloud computing deployment method as per their business requirements and compatibility factors. Below are the four deployment methods are available for selection: Private Cloud The private cloud is also referred as a neologism. However, the concept of this term out dates cloud computing by 40 years. Private clouds are recommended for organization requiring advanced security and privacy measures. The private cloud is administered exclusively for only a single organization, in order to maintain strict level of security (, Cloud Deployment Models ). Community Cloud As compared to a private cloud, the community cloud is shared among many organizations having identical business requirements. Moreover, the required infrastructure is shared among all the organization that is connected to the cloud saving the cost and demonstrates one of the advantages of cloud computing (, Cloud Deployment Models ). Public Cloud Public computing is a traditional approach where the resources are accessible on the Internet. Third party providers, known as the cloud vendors, organize the hosting for these resources on the Internet. The services and resources on this cloud are accessible to the public and groups of various industries (, Cloud Deployment Models ). Hybrid Cloud A hybrid cloud comprises of a mixture of all types of clouds i.e. public, private and community. Most organizations deploy this type of cloud as it provides a range of options in the context of accessibility. By incorporating hybrid clouds, issues such as PCI compliance can be eliminated (, Cloud Deployment Models ). Cloud Computing Service Models Cloud computing consists of applications that are represent ed as a service on the web and the provision of hardware / software services provided by companies operating data centers. Likewise, the services provided over the Internet are referred as (Software as a Service) ‘SaaS’. There are few sellers who use the term (Infrastructure as a

Saturday, November 16, 2019

Uniformity of gamma camera images

Uniformity of gamma camera images Introduction In 1958, Hal Anger developed the first ?- camera and forever changed the area of nuclear medical imaging. Angers camera (also known as scintillation camera or gamma camera) used a 6 mm thick scintillation crystal (NaI) coupled to seven photomultiplier tubes (PMTs), each 3.5 cm diameter, arranged in a hexagonal shape. The crystal was used to convert the gamma rays into scintillation photos which would then be converted into electrical signals by the PMTs. The output of the PMTs in Angers camera was analogue and represented continuous values of gamma ray energy and the position of the event. The camera had a collimator mounted in front of the sodium iodine crystal, which was used to stop scattered gamma rays and essentially form the image. In the initial design of the gamma camera all the circuits were analogue and the camera is still known as an analogue camera. The images were displayed in cathode ray tubes (CRTs) or they were imprinted onto photographic films which were used as hard copies.   Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Later on, with the development of electronics and computer technology, the analogue output of the photomultiplier tubes would be fed into a digital computer which would process the signals to form the clinical image. In order to achieve that, analogue to digital converters (ADCs) were incorporated into Angers design which would digitize the signals before feeding it to the processing unit. Gradually all the major electrical components of the gamma camera were replaced by digital electronics and in modern cameras the signals are digitized by ADCs installed individually in every PMT. The complete digitization of the gamma camera allowed for significant improvements of the prototype gamma camera. With the increased processing power available, modern gamma cameras can nowadays image at high count rates, can store digital images and display them directly onto computer screens. Furthermore, they can implement a range of corrections which have drastically imp roved the quality of the modern clinical images. Our objective in this essay is to describe the factors that affect the uniformity of gamma camera images, the technological advancements that have improved the cameras imaging quality and capability as well as the methods that are currently used to assess and correct a ? cameras uniformity. The basic components of a gamma camera and their function The general principles behind the function of a gamma camera are rather simple to understand. So, before we proceed onto discussing the uniformity of a ?-camera, we ought to mention its basic components and their function since they can affect image uniformity. The main components of a gamma camera are described below. The gantry of the gamma camera provides mechanical support to the detector head. The scintillation crystal [usually NaI (TI)], is maybe the most important component of gamma camera. Its function is to convert the incident gamma rays, originating from the patient, into scintillation photons. Between the crystal and the photomultiplier tubes, a transparent light guide is put in place to maximize the optical transmission of light from the crystal to the PMTs. Once the scintillation photons reach the photocathodes of the PMTs, they get converted into photoelectrons. The photoelectrons then, go through an amplification stage where their number is multiplied by a series of dynodes. Finally the electrons hit the PMTs anode and we get the output voltage that represents our signal. The photomultiplier tubes are connected to the pulse arithmetic circuits where the position and the energy of each event are determined. In addition, at the PMT output, gamma cameras incorporate a pulse height analyzer that determines which events get accepted based on their energy. This mechanism is put in place in an effort to reject signals arising from scattered photons that have managed to penetrate the collimator. The pulse height analyzer is also known as the energy window. The energy window is usually set to accept events with energies ranging from -10% to +10% of the peak energy. For example, when imaging with 99mTc (? emitter, 140 KeV, T1/2 = 6 h) the energ y window is set between 126 KeV and 154 KeV. The final component of the detector head of the gamma camera is the collimator. It is a lead plate with a large number of holes which is placed in front of the scintillation crystal. The main function of this component is to control which of the gamma rays pass through to the crystal and which ones are stopped. Gamma rays that travel parallel to the collimators holes (perpendicular to the crystal) are allowed through while oblique rays are attenuated. The role of the collimator is essential because it provides the PMTs with the ability to identify the location of each event and it stops scattered x-rays which spoil the contrast of the images. In addition, the collimator provides physical protection to the extremely sensitive and fragile scintillation crystal that lies beneath it. Camera Uniformity The term uniformity refers to the variations of intensity present in an image acquired using a uniform radioactive source. Factors that affect ? camera uniformity In the previous section of this essay we described briefly the function of the gamma camera. In reality however, things do not work perfectly. In fact there are numerous sources that can cause image imperfections and ruin the uniformity of our images. The most common sources and factors that affect image uniformity are: Collimator defects variations in hole size and angulation variations in septal thickness Crystal and light guide non uniformities in the crystals stopping power non uniformities in the number of scintillation photons emitted by the crystal non uniformities in the transmission of light through the light guide and the optical grease Photomultiplier Tubes variations in light collection efficiency with the events position in the crystal due to geometry variations in light collection efficiency with the depth of interaction in the crystal due to geometry variations in the quantum efficiency of the photocathode across the face of the photomultiplier tubes variations in PMT tuning gain differences between PMTs Count rate Energy of incident gamma rays To begin with, it is fairly obvious that a poorly constructed or damaged collimator will affect primarily the sensitivity of the gamma camera. The sensitivity variations arise from the fact that a defective collimator will attenuate gamma rays in a non uniform manner. That is to say, that the number of gamma rays which pass through the collimators holes will vary either due to differences in the septal thickness or due to differences in the angulation of the holes. So, the image will appear either hot or cold depending on the number of counts, thus ruining the uniformity of the image. The collimator, however, is not the only cause of imperfections. In an ideal world, the scintillation crystal would exhibit properties such as homogeneous stopping power, interaction with gamma rays only through photoelectric absorption, transparency towards scintillation photons and high conversion efficiency (gamma to scintillation photons). However, in reality, the crystal presents with variations in its stopping power which ultimately lead to sensitivity imperfections and the appearance of hot and cold spots on our images. As we mentioned above, this variation in counts is a manifestation of non uniformity. Furthermore, the scintillation crystals exhibit incongruities in their light output. This is attributed to variations in the doping of the crystal with the chemical which serves as the activation centre for the luminescence phenomenon. (In the NaI crystal the doping is performed using thallium). In addition real crystals exhibit non uniform transmission of light, in cases where the optical grease used to couple Crystal-PMTs is dried out, or if the crystal has been exposed to moisture in which case opacities (yellowing) are developed. Finally, non uniformities in the images also originate from variations in the fraction of light that the photomultipliers collect. Light is lost between the gaps of the PMTs array but also near the edges of each individual PMT due to reflection. The majority of scintillation photons are collected near the center of the PMT, where the collection efficiency is best. This causes the counts to appear as if they were pulled towards the centre of the PMT and results to non- linearities. Even, the smallest non linearities will result in large non uniformities in the images. Last but not least, we ought to mention non uniformities arising from variations in the function of the photomultiplier tubes. The photocathode of a PMT, in reality, does not convert photons into electrons uniformly. Its quantum efficiency is better near its center and deteriorates as we move toward the edges. In addition, different PMTs tend to exhibit slightly different gains which ultimately lead to non uniformities. For example, a PMT with a gain above/below the correct gain will result in fewer counts falling within the energy window, creating a cold area over the dysfunctional PMT. Drift in PMT gain is usually caused over time, due to ageing, exposure to magnetic fields (Earth, MRIs), temperature fluctuations or power supply instabilities. So far we have discussed how the function of the gamma camera components can affect uniformity in practice. For completeness, we ought to mention that gamma camera uniformity (specifically the intrinsic uniformity) can also be affected by other factors such as: the activity of the radionuclide used to image, the number of acquired counts, the source-camera distance and the source volume. According to Elkamhawy, Rothenbach, Damaraju and Badruddin the intrinsic uniformity of the gamma camera increases with the increase of the source activity. However the increase in activity must not exceed the count rate capabilities of the camera otherwise non uniformities may be caused. In addition, according to Elkamhawy et al., the intrinsic uniformity increases as the counts go up. This is something to be expected, considering the probabilistic nature of the phenomenon of radioactive decay. Poisson statistics teach us that as the counts become higher the relative standard deviation decreases. That is to say that the coefficient of variation is reduced as the number of counts goes up and the statistical noise decreases. Finally, there are reports of an inverse correlation between the source to camera distance and the intrinsic uniformity. As the distance increases the intrinsic uniformity is increased due to a more uniform attenuation of the gamma rays travelling towards the crystal. That is to say, when the source is close to the crystal the gamma rays have to travel longer to reach the edges of the crystal than the centre. (See figure 2). Therefore the gamma rays travelling towards B will suffer greater attenuation that gamma rays travelling to point A. This dif ference in attenuation will result in count differences thus increasing the intrinsic non uniformity. However, if we increase the source to crystal distance, the gamma rays will undergo more or less the same attenuation due to the inverse square law and the counts will be more uniform throughout the crystal. Developments in gamma camera technology that have contributed in uniformity improvements. In older, analogue gamma cameras, the only correction that could be performed was a sensitivity correction that dealt with sensitivity variations on the images. Following the technological developments, the high processing capabilities of modern microprocessors and the implementation of analog to digital converters into their design, modern gamma cameras have been equipped to deal with non uniformities through a series of corrections.   Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Differences in photomultiplier gain used to be dealt with using the cosmetic approach which entailed the individual tuning of each PMT to match the other. Advances in microprocessors now allow for more advanced approaches. Maps containing the regional differences in pulse heights, as acquired from uniform flood sources, can be used to correct on an event to event basis (on the fly). As we mentioned earlier PMTs are affected by various external factors and they are caused to drift. Novel technologies have been introduced into gamma cameras which enables them to keep the gains stable in real time. For example, manufactures such as Toshiba, Elscint and IGE have implemented auto stabilization techniques where LEDs are used to tune the PMTs. The LEDs emit light which is detected by the tubes and the output voltage is then compared with a reference voltage and the gain is adjusted accordingly. With the increased processing power other corrections are current ly being used too. Linearity and energy corrections are common ways to improve the degree of uniformity in modern cameras. In the energy correction the most common practice is to expose the camera to a monochromatic gamma ray source (usually 99mTc) and acquire reading for the energy in various positions. Theoretically, the energy signal should remain constant independent of location on the crystal. However, as we have mentioned earlier there is always a small fraction of light which is lost. So, the readings are compared to the mean expected energy and a map of correction factors is stored in the gamma cameras memory which is used to rectify any errors in the energy signals. The linearity correction has a similar function. We would expect every events position coordinates to appear as a linear combination of the PMTs output voltages. , Y. But again due to light losses that is never true in practice. Fortunately, this is easily corrected through the linearity correction maps similar to those that we acquire for the energy correction. First of all, we remove the collimator and we introduce a lead plate with parallel holes throughout its extent. Then the system is exposed to a uniform point source. The image is processed and the positional errors are determined and stored as a separate correction map. The final correction to be applied on an image is the sensitivity correction, which has been used in the past as the only uniformity correction of analogue cameras. In modern cameras the technicians first stabilize the gains of the PMTs and then they proceed to apply the energy and linearity correction which have the greatest impact in the cameras uniformity. Then, and only then, they proceed with the sensitivity correction. The correction maps for the sensitivity are acquired by exposing the gamma camera (with the collimator mounted) to a uniform radioactive source. The counts are scaled up or down to eliminate any remaining cold or hot spots on the image. We should note that the individual correction maps should be acquired for each collimator since the sensitivity variations are primarily caused by collimator defects and other factors that we have already discussed. The scientific community has not stopped at the abovementioned corrections. Manufacturers and researchers have shifted their focus to new technologies hoping to replace components that contribute to bad uniformity but also to improve other gamma camera properties (resolution, count rate capability e.t.ch). For example, position sensitive photomultiplier tubes have been introduced (Hamamatsu, Photonis et. al.), which are capable of detecting the location of the event more accurately and efficiently that conventional PMTs. In addition to that, silicon photodiode arrays are being used coupled to the scintillation crystals for improved light sensitivity and quantum efficiency. Finally, there is a shift of interest towards replacing scintillation crystals with semiconducting materials. The combination of cadmium telluride with zinc makes for a great x ray and gamma ray detector. The main advantage of semiconductors over scintillation crystals is that the first converts photons directly in to electrical current. Contrary to the scintillation crystal that needs to use the photomultiplier tubes which are a significant source of non uniformities as we have mentioned. Quality Control: Measurement of non uniformity in gamma cameras Maintaining good uniformity in clinical images is extremely important. Even the smallest degree of non uniformity can cause artifacts which can prevent doctors from diagnosing the patient or lead them to the wrong diagnosis. The assessment of a gamma cameras uniformity is an integral part of its quality control and it is carried out in regular intervals (daily or weekly basis). These kind of investigations are carried out to ensure that there are no, non-uniform areas in the cameras field of view. The uniformity of a gamma camera can be measured either intrinsically or extrinsically. In the intrinsic setup, the collimator is removed and the naked crystal is exposed to a low activity uniform flood source. This setup has the advantage that the measurements are not affected by collimator induced non uniformities. In the extrinsic setup the system uniformity is assesses and the collimator is mounted onto the crystal. The advantage in this case is that the conditions of measurement are closer clinical parameters since in clinical acquisition the collimator is always in place. As far as the flood sources are concerned, 99mTc and 57Co are the most common choices. The technetium has the advantage of being readily available in hospitals and can be used as a mixture of radioactive material and water to create a uniform flood source. Also technetium is the most common radionuclide used in daily medical practices. Moreover, the presence of water presents a more realistic scatter source re sembling scattering conditions in patients. The main drawback of the technetium flood source is that it has a short half life and must be used soon after its creation. In addition, the construction method presents with the danger of spilling and contamination. An alternative to 99mTc is a 57Co source which has a convenient half life of 271 days. The peak energy of cobalt is close to that of technetium which is convenient in cases where the cameras performance is energy dependent. On the other hand, cobalt flood sources are quite costly and are usable only for about a year. Furthermore, cobalt sources often contain amounts of other cobalt isotopes Co60 and Co58 which emit higher energy gammas and may affect our measurements. A common testing protocol is the following. The radioactive source is placed at a distance approximately 4 times the field of view to ensure that the variation between the counts in the centre and the edge of the crystal is sufficiently small (as we have explained in figure 2) and can be ignored. The crystal is irradiated uniformly and a few million counts are acquired (approximately 1- 5 million counts). We need to acquire a statistically sufficient number of counts to ensure that the Poisson noise is minimal. We make sure that all the right corrections have been applied before we assess the images. A visual inspection of the images usually reveals gross deviations in performance. However, once the images have been acquired they are processed, using the cameras software, to yield values for common parameters such as the mean uniformity and the corrected uniformity which are used to quantify the quality of the camera. The mean uniformity informs us for the overall uniformity of the c amera throughout the FOV. The corrected uniformity is acquired by removing the Poisson noise from the mean uniformity. Those are not the only parameters that we can examine and other such as the integral uniformity and the differential uniformity are often assessed. Conclusion The uniformity of a gamma camera is maybe the most important parameter that expresses the quality of the cameras performance. Non uniform areas in the field of view can result in misdiagnosed patients and low quality of clinical services. Thus it is essential to perform regular checks to ensure optimal performance of the ? camera. Assessing the uniformity of a camera is not easy. As a parameter, uniformity is dependent on many factors and there are many things that can go wrong. Gamma cameras require regular testing, responsible operation and expert knowledge of its governing principles to make sure that its performance stays within clinically acceptable levels. References Professor Richard Lawson, The Gamma Camera , Lecture notes for the Nuclear Medicine Module of the University of Manchester MSc in Medical Physics, 2010. Peter F. Sharp, Howard G. Gemmell , Alison D. Murray, Practical Nuclear Medicine , 1-19, 65-90 Springer Publications, Third Edition. http://en.wikipedia.org/wiki/Gamma_camera EMITEL, http://www.emitel2.eu/emitwwwsql/encyclopedia.aspx, Scintillation Camera http://upload.wikimedia.org/wikipedia/commons/0/0c/ Gamma_camera_cross_section.PNG Abdelhamid A. Elkamhawy, Joseph R. Rothenbach, Srikanth Damaraju and Shamim M. Badruddin, Intrinsic Uniformity and Relative Sensitivity Quality Control Tests for Single Head Gamma Cameras, Nuclear Medicine Department, Cuero Community Hospital, Cuero; and Nuclear Medicine Department, Spohn Shoreline Hospital, Journal of Nuclear Medicine Technology 2000; 28: 252-256 A. Hughes and P.F Sharp, Factors affecting gamma camera non-uniformity, Department of Bio-Medical Physics and Bio-Engineering, university of Aberdeen, Forester hill, Aberdeen, AB92ZD, UK, Phys. Med. Bio., 1988, Vol 33, No.2, 259-269, IOP Publishing Ltd, 1988 A. Hasman, PhD and R.T Groothedde, Gamma camera uniformity as a function of energy and count rate, Department of Medical Informatics, Medical Faculty, Free University Amsterdam, The Netherlands, Department of Radiotherapy an d Nuclear Medicine, St. Radboud University Hospital, Nijmegen, The Netherlands, British Journal of Radiology, 49, 718 722, 1976 William R. Hendee and E.Russell Ritenour, Medical Imaging Physics, Wiley Publications, 4th Edition, Pages 179-195, 198-215 http://csusap.csu.edu.au/~xzheng/lectures/phy232/phy232topic8.ppt, Gamma Camera (II), Charles Sturt University Hamamatsu Photonics, Position Sensitive Detectors, http://sales.hamamatsu.com/index.php?id=20231language=1 Wikipedia, Cadmium Telluride, http://en.wikipedia.org/wiki/Cadmium_tellurid Michael K. OConnor, Quality Control of Scintillation Cameras (Planar and SPECT), Mayo Clinic, Rochester, MN, published on the website of the American Association of Physicists in Medicine. Uniformity measurement, Isotrak C-ThruTM Flood Source, High Technology Sourced Ltd, www.hightechsource.co.uk Length : 3.300 excl references and title.

Wednesday, November 13, 2019

Free Affirmative Action Essays - Affirmative Action is Reverse Discrimination :: affirmative action argumentative persuasive

Affirmative Action is Reverse Discrimination "That student was accepted because of affirmative action policies." With my first intake of the phrase, I realized that the student, whom I knew and worked with so many times, the one with such a lack of motivational ability, confidence, and ideas, was now occupying my chances towards a preferred school. "Affirmative action", I soon found out, was used by President John F. Kennedy over 30 years ago to imply equality and equal access to all, disregarding race, creed, color, or national origin. As a policy setting out to resolve the problems of discrimination, Affirmative Action is simply nothing more than a quota of reverse discrimination. Affirmative Action emphasizes prospective opportunity more towards statistical measures. It promotes the hiring and acceptance of less experienced jobs of the workforce and less able students. Sometimes the affirmative action policies forces employers and schools to choose the best workers and less privileged students of the minority, in all, regardless of their potential lack basic skills. As remarked by Maarten de Wit, an author who's article I found on the World Wide Web, affirmative action beneficiaries are "not the best pick, but only the best pick from a limited group." Another article I found, "Affirmative action: A Counter- Productive Policy" by Ernest Pasour also on the W.W.W., is one example which reveals that Duke, a very famous and prestigious university, adopted a resolution requiring each of it's department to hire at least one new African-American for a faculty position the 1993 date. More proofs of Affirmative Action in action is the admission practices at the University of California Berkeley. In the same article by Pasour, it states that while whites or Asian-Americans need at least a 3.7 grade point average through high school to be in consideration for admission in Berkeley, most minorities with much lower standards are automatically admitted. All the preferential treatment may provide a basis for employers, employees, as well as real applicable students to fight for an end to Affirmative Action. The development of more racial tensions are yet another part of the Affirmative Action policy. Tensions between blacks and whites and other racial groups at U.S. colleges are related to preferential treatment. Tensions at the workplace also deal with the toleration of race and sex